

DOCK AND VESSEL MOUNTED

PEDESTAL CRANE
OPERATOR
SAFETY
TRAINING



"When anyone asks me how I can best describe my experience of nearly forty years at sea, I merely say uneventful....(I)n all my experience I have never been in any accident of any sort worth speaking about. I have seen but one vessel in distress in all my years at sea...I never saw a wreck and never have been wrecked, nor was I ever in any predicament that threatened to end in disaster of any sort."

Captain E. J. Smith - 1907



## TELESCOPING BOOM CRANE







## SWINGING BOOM CRANE



## CRANE COMPONENTS



## SWINGING BOOM CRANE COMPONENTS



# PEDESTAL MOUNTED CRANE Inspection Check List

| INSPECTION AREA        | INSPECTION RESULTS |        |     |          |  |  |
|------------------------|--------------------|--------|-----|----------|--|--|
|                        | Sat.               | Unsat. | N/A | Comments |  |  |
| Supporting Structure   |                    |        |     |          |  |  |
| Welds                  |                    |        |     |          |  |  |
| Bolts                  |                    |        |     |          |  |  |
| Rotating System        |                    |        |     |          |  |  |
| Bull & PinionGear      |                    |        |     |          |  |  |
| Swing Brakes           |                    |        |     |          |  |  |
| Hydraulic Drive Motor  |                    |        |     |          |  |  |
| Boom                   |                    |        |     |          |  |  |
| Welds                  |                    |        |     |          |  |  |
| Stress & Distortion    |                    |        |     |          |  |  |
| Hinge Pin              |                    |        |     |          |  |  |
| Boom Cylinder & Pins   |                    |        |     |          |  |  |
| Wear Pads              |                    |        |     |          |  |  |
| Telescopic Operation   |                    |        |     |          |  |  |
| Tip Section & Sheaves  |                    |        |     |          |  |  |
| Angle/Radius Indicator |                    |        |     |          |  |  |
| Anti-Two Blocking Sys. |                    |        |     |          |  |  |
| Winch System           |                    |        |     |          |  |  |
| Wire Rope Condition    |                    |        |     |          |  |  |
| Rope Reeving           |                    |        |     |          |  |  |
| Mounting Bolts         |                    |        |     |          |  |  |
| Brakes                 |                    |        |     |          |  |  |
| Functional Operation   |                    |        |     |          |  |  |
| Hydraulic System       |                    |        |     |          |  |  |
| Pump Performance       |                    |        |     |          |  |  |
| Control Functions      |                    |        |     |          |  |  |
| Control Markings       |                    |        |     |          |  |  |
| Hydraulic Leaks        |                    |        |     |          |  |  |
| Hose Condition         |                    |        |     |          |  |  |
| Fluid Level            |                    |        |     |          |  |  |
| Load Block             |                    |        |     |          |  |  |
| Sheaves                |                    |        |     |          |  |  |
| Pins                   |                    |        |     |          |  |  |
| Swivel                 |                    |        |     |          |  |  |
| Hook                   |                    |        |     |          |  |  |



The operator is responsible for inspecting the crane prior to using it.

## **BOOM & TURRET INSPECTION**



## TYPICAL DOCK MOUNTING METHODS





Check mounting methods to ensure that bolts are not loose and that no damage to the mounting or the dock is apparent.





# INSPECT FOR LEAKING HYDRAULIC HOSES AND CYLINDERS



Leaking Cylinders

Chaffed, leaking, or damaged hoses



#### ROTATION BEARING

#### Rotation gear



Rotation ring

Mounting holes

Seal

Holes spaced for uniform load

Grease fitting
Bearing spacer
Ball bearing

Bearing raceway







## INSPECTING SHEAVES



**WORN GROVES** 

PROPER SIZE GROVE

## HOOK INSPECTION

#### **CHECK FOR:**

- Wear
- Deformation
- © Cracks & Sharp Nicks
- Modifications
- Safety Latches
- Swivel Wear & Lubrication
- Hook Shackle Mousing



Self-closing hook



Standard safety latch hook

**Wear & Deformation** 

## HOOK INSPECTION



### Check for:

- Wear
- Deformation
- Cracks & Sharp Nicks
- Modifications
- Safety Latches
- Swivel Wear & Lubrication
- Hook Shackle Mousing



Self-closing hook

## WIRE ROPE INSPECTION

#### FATIGUE FAILURE





Heavy loads over small sheaves

**FATIGUE BREAKS** 





Repeated bending, normal loads

STRAND KNICKING





Accentuated with heavy loads

## WIRE ROPE INSPECTION

KINKED WIRE ROPE



Crossed lines on drum
BIRDCAGE



Sudden tension release

HIGH STRAND



Improper socketing, kinks







**DOCK AND VESSEL MOUNTED CRANE** 

## CRANE CONTROLS

Crane controls need to function smoothly and without excessive play in the control linkage. All controls need to be properly labeled including function and direction of motion.





## ELECTRICAL CONTROLS



## DYNAMIC LOAD





Total Load = Static Load + Dynamic Load

## GROSS LOAD



Gross Load = Net Load + Rigging + Attachments

## SIDE LOADING



# AVOID SIDE LOADING

## SIDE LOADING



### DETERMINING LIFTING CAPABILITY

- Calculate the gross load
- Determine the maximum radius
- Determine the maximum height
- Refer to load chart to determine if lift will be within the crane's capacity.

## LOAD CHARTS

#### LOAD CAPACITY CHART ALASKA MARINE CRANE MODEL MCT-1250

| BOOM RETRACTED        |                       |                        | BOOM EXTENDED         |                       |                        |  |
|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|--|
| BOOM ANGLE<br>IN DEG. | LOAD DIST.<br>IN FEET | LOAD CAP.<br>IN POUNDS | BOOM ANGLE<br>IN DEG. | LOAD DIST.<br>IN FEET | LOAD CAP.<br>IN POUNDS |  |
| 63                    | 10                    | 24,000                 | 79                    | 10                    | 16,000                 |  |
| 47                    | 15                    | 17,170                 | 73                    | 15                    | 12,800                 |  |
| 30                    | 20                    | 13,140                 | 68                    | 20                    | 9.700                  |  |
| 1 22                  | 10.700                | 58                     | 25                    | 8,250                 |                        |  |
|                       |                       | 50                     | 30                    | 6,960                 |                        |  |
|                       |                       | 45                     | 35                    | 5.900                 |                        |  |
|                       |                       | 38                     | 40                    | 5,130                 |                        |  |
|                       | No. 19 Acres 10       | 27                     | 45                    | 4.500                 |                        |  |
|                       |                       | 1                      | 50                    | 3,300                 |                        |  |
|                       |                       |                        |                       |                       |                        |  |

## ASSESSING THE LIFTING REQUIREMENTS













## The Big Picture

## ASSESSING THE LOAD



## **Need to Know:**

- Weight
- Size
- Center of Gravity

## RIGGING REQUIREMENTS



- Slings
- Chains
- Eyes
- Special Hardware

## ASSESSING THE 'PICK' AREA



- Obstruction
- Visibility
- Personnel Safety
- Pedestrians
- Load Free to Pick
- Height of Lift
- Reach
- Tag Line Required

### ASSESSING THE 'PLACEMENT' AREA



- Obstruction
- Visibility
- Personnel Safety
- Pedestrians
- Load Support
- Height of Lift
- Reach
- Accuracy of Placement

## HAND SIGNALS







BOOM UP







KNUCKLE







TELESCOPE IN TELESCOPE OUT









FLOAT OUT



**EMERGENCY STOP** 



Wire Down



Wire Down Slowly



Wire Up



Wire Up Slowly



Boom Up



**Boom Down** 



Swing Boom



Knuckle Boom



Telescope in



Telescope Out





Telescope Out (One Hand) Telescope In (One Hand)



Stop





**Emergency Stop** 



Dog Everything





Boom Up, Wire Down (Float Load In)





Boom Down, Wire Up (Float Load Out)

#### MAKING THE LIFT

- Review the lift scenario with the operator, riggers and signal person
- Attach taglines when necessary
- Position signal person within visibility of the load and operator
- Begin by lifting the load slowly
- Re-check the boom angle indicator to assess radius increase
- Keep load as low as possible when moving it
- Swing slowly to avoid swing out.
- Avoid erratic booming
- Follow signal and stop operation when uncertain
- Lower load slowly

#### CRANE SAFETY

- Avoid two-blocking the crane
- Do not leave the crane with a suspended load
- Rig the crane with sufficient parts of line for the load
- Always have a minimum of three wraps of cable on the drum
- Monitor the winch to make sure the it is spooling correcting
- Do not lift loads over personnel
- Lift one load at a time

## **LOADING PALLETS**



**UNSAFE TO MOVE** 



SAFE TO MOVE

#### STACKING PRODUCT



LOOSE PACKAGES
NEED TO BE
SECURED BEFORE
MOVING.

#### PROPER STACKING METHODS



For proper stacking of boxes, edges of an upper layer should not be over the lower edges.





## **UNSAFE STACKING METHOD**

Avoid having box edges line up from layer to layer



## CARGO NETS



## CARGO NETS



PROPERLY LOADED



**OVERLOADED** 

#### PALLET BARS



Inspect pallet bars for damaged bars, wire rope, synthetic rope, and hardware.



## LIFTING GAS CYLINDERS



NEVER lift gas cylinders by the valve or valve protection housing. Cylinders should be lashed onto a pallet or lifted by cylinder cages.





## PLACING CARGO ON DECK

Cramped space on vessel decks can make cargo handling dangerous.



## HANDLING BULKY LOADS

Bulky loads should be broken down and lifted as individual items.



#### WIRE ROPE SLING INSPECTION

CRUSHING
UNSTRANDING
BIRDCAGING
STRAND DISPLACEMENT
CORE PROTRUSION
CORROSION
BROKEN OR CUT
STRANDS
BROKEN WIRES





#### CHAIN SLING INSPECTION



## CHAIN SLINGS CAUSE FOR REMOVAL CRACKS, NICKS AND GOUGHES





SHARP TRANSVERSE NICKS AND GOUGES SHOULD BE ROUNDED OUT BY GRINDING, DO NOT EXCEED WEAR ALLOWANCE

## CHAIN SLINGS CAUSE FOR REMOVAL DEFORMATION AND STRETCH



BENT LINK FROM SHARP CORNER



ONE LONG LEG



CHECK REACH VS. TAG

#### SLING INSPECTION

CUT SLING







CHAFFED SLING

**PUNCTURED SLING** 

**DOCK AND VESSEL MOUNTED CRANE** 

#### SLING INSPECTION

KNOTS IN SLING







WELD SPLATTER DAMAGE

HEAT DAMAGE

**DOCK AND VESSEL MOUNTED CRANE** 

#### SLING INSPECTION

# ILLEGIBLE DATA TAG









**EXPOSED RED YARNS** 

**DOCK AND VESSEL MOUNTED CRANE** 

#### SHACKLES



**SCREW PIN** 



**ANCHOR BOLT** 



PIN WITH COTTER (NOT LEGAL FOR LIFTING)



**DEFORMATION** 



**BOLT SUBSTITUTION** 



WEAR

#### SHACKLES



| Side Loading Reduction Chart For Screw Pin & Bolt Type Shackles Only† |                                  |
|-----------------------------------------------------------------------|----------------------------------|
| Angle of Side Load                                                    | Adjusted Working Load Limit      |
| 0° In-Line                                                            | 100% of Rated Working Load Limit |
| 45° from In-Line                                                      | 70% of Rated Working Load Limit  |
| 90° from In-Line                                                      | 50% of Rated Working Load Limit  |

† DO NOT SIDE LOAD ROUND PIN SHACKLES

### SHACKLES

Shackles
symmetrically loaded
with two leg slings
having a maximum
included angle of
120 deg. can utilized
to full Working Load
Limit.



# EYE BOLTS



SHOULDERED



UNSHOULDERED



| DIRECTION OF PULL | ADJUSTED WORKING LOAD     |
|-------------------|---------------------------|
| In-Line           | Full Rated Working Load   |
| 45 Degrees        | 30% of Rated Working Load |
| 60 Degrees        | 25% of Rated Working Load |

## EYE BOLTS

#### WRONG!



DO NOT REEVE SLINGS ONE EYE BOLT TO ANOTHER. LOAD ON BOLT IS ALTERED.

#### CAUTION!



STRUCTURE MAY BUCKLE FROM COMPRESSION FORCES.

## SLING ANGLES



Stresses in the slings and the load increase as the sling angle decreases

# SLING ANGLES



# SLING ANGLES



| Sling Angle Degree (A)                                     | Load Angle Factor = L/H |  |
|------------------------------------------------------------|-------------------------|--|
| 90                                                         | 1.000                   |  |
| 50                                                         | 1.155                   |  |
| 50                                                         | 1.305                   |  |
| 45                                                         | 1.414                   |  |
| 30                                                         | 2.000                   |  |
| Load On Each Leg Of Sling = (Load / 2) X Load Angle Factor |                         |  |

### **ESTIMATING WEIGHTS**

#### Acceptable methods of determining weight

You may find the weight from:

- Data on manufacturing label plates.
- Manufacturer documentation.
- Blueprints or drawings.
- Shipping receipts.
- Weigh the item.
- Bill of lading (be careful)
- Stamped or written on the load
- Approved calculations

*Never use word of mouth* to establish the weight of and item!

### **ESTIMATING WEIGHTS**

## Calculating the weight

To find the weight of any item you need to know its volume and unit weight.

- Volume x Unit weight = Load weight
- Unit weight is the density of the material
- Unit weight is normally measured by pounds per cubic foot.

## **ESTIMATING WEIGHTS**

Here are some examples of common materials and their unit weight:

| METALS                    |     | TIMBER               |     |
|---------------------------|-----|----------------------|-----|
| Aluminum                  | 165 | Cedar                | 34  |
| Brass                     | 535 | Cherry               | 36  |
| Bronze                    | 500 | Fir, seasoned        | 34  |
| Copper                    | 560 | Fir, wet             | 50  |
| Iron                      | 480 | Hemlock              | 30  |
| Lead                      | 710 | Maple                | 53  |
| Steel                     | 490 | Oak                  | 62  |
| Tin                       | 460 | Pine                 | 30  |
| MASONARY                  |     | Poplar               | 30  |
| Ashlar masonry            | 160 | Spruce               | 28  |
| Brick, soft               | 110 | White pine           | 25  |
| Brick, pressed            | 140 | Railroad ties        | 50  |
| Clay tile                 | 60  | LIQUIDS              |     |
| Rubble masonry            | 155 | Diesel               | 52  |
| Concrete, cinder, haydite | 110 | Gasoline             | 45  |
| Concrete, slag            | 130 | Water                | 64  |
| Concrete, stone           | 144 | EARTH                |     |
| Concrete, reinforced      | 150 | Earth, wet           | 100 |
| MISC.                     |     | Earth, dry           | 75  |
| Asphalt                   | 80  | Sand and gravel, wet | 120 |
| Glass                     | 160 | Sand and gravel, dry | 105 |
|                           |     |                      |     |

#### Volume of a cube

Length x Width x Height = Volume

8 ft x 4 ft x 2 ft = 64 cubic feet



If the material was **cedar**, then all we would have to do to determine it's weight would be to multiply the unit weight of cedar x 64.

Unit weight x Volume = Weight

34 lbs. X 64 cubic ft. = 2,176 lbs.

#### Volume of a cylinder

Pi x Radius Squared x Length = Volume

 $\pi$  x Radius<sup>2</sup> x Length = Volume

 $3.14 \times 1^2$  ft x 10 ft = 31.4 cubic ft



If the material was **reinforced concrete**, then all we would have to do to determine it's weight would be to multiply the unit weight of reinforced concrete x 31.4.

150 lbs. X 31.4 cubic ft. = 4,710 lbs.

#### Volume of pipe

Calculating the volume of pipe is a bit trickier but it is just simply subtracting the volume of the hole from the volume of the pipe.

If the pipe were one inch thick, three feet wide and 8 feet long, then we would figure the volume of the entire pipe and subtract the volume of the hole to get the the volume of the material.



$$3.14 \times (1 \frac{1}{2} \text{ ft.})^2 \times 8 \text{ feet} = \text{total volume of pipe } (56.52 \text{ ft}^3)$$

$$3.14 \times (1 \text{ ft 5 in.})^2 \times 8 \text{ feet} = \text{volume of hole } (50.41 \text{ ft}^3)$$

$$56.52 \text{ ft}^3 - 50.41 \text{ ft}^3 = 6.11 \text{ ft}^3$$

Volume of material x unit weight = total weight

If this pipe were **steel** then the unit weight would be 490 lbs.

$$6.11 \times 490 \text{ lbs} = 2,9994 \text{ lbs}.$$

**For thin pipe** a quick way to \***ESTIMATE** the volume is to split the pipe open and calculate the volume like a cube. The formula would be:

 $\pi$  x diameter = width, so:

 $\pi$  x diameter x length x thickness x unit weight = weight of object

 $3.14 \times 3 \text{ ft } \times 8 \text{ ft } \times 1/12 \text{ ft (or .08 ft)} \times 490 \text{ lbs} = *3,077.2 \text{ lbs}$ 



 $3.14 (\pi) \times 3$  ft diameter = 9.42 (width)

### **WEIGHT TABLES**

#### **WEIGHT TABLES**

Weight tables are an excellent way to calculate load weight. If you are handling certain materials often, then having a chart that gives you the weight per cubic foot, cubic yard, square foot, linear foot or per gallon. Here are a few examples:

#### **METAL PLATES**

STEEL PLATES weigh approximately 40 lbs per sq. ft. at 1 inch thick. 1/2 inch thick would then be about 20 lbs. per sq. ft.

A steel plate measuring 8 ft. x 10 ft. x 1/2 inch would then weigh about 3,200 lbs. (8 x 10 x 40 lbs = 3,200 lbs.)

#### **BEAMS**

Beams come in all kinds of materials and shapes and lengths. STEEL I-BEAMS weigh approximately 40 lbs a linear ft. at 1/2 inch thick and 8 inches x 8 inches. If it were 1 inch thick then it would be 80 lbs a linear ft. If it were 20 feet long at 1 inch thick then it would weigh about 1,600 lbs. (20 ft. x 80 lbs. = 1,600lbs.)

